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Abstract

The introduction of ICT in techno-socio-economic systems, such as Smart Grids, traffic man-
agement, food supply chains and others, transforms the role of simulation as a scientific method
for studying these complex systems. The scientific focus and challenge in simulations move
from understanding system complexity to actually prototyping online and distributed regulatory
mechanisms for supporting system operations. Existing simulation tools are not designed to ad-
dress the challenges of this new reality, however, simulation is all about capturing reality at an
adequate level of detail. This paper fills this gap by introducing a Java-based distributed simula-
tion framework for inter-connected and inter-dependent techno-socio-economic system: SFINA,
the Simulation Framework for Intelligent Network Adaptations. Three layers outline the de-
sign approach of SFINA: (i) integration of domain knowledge and dynamics that govern various
techno-socio-economic systems, (ii) system modeling with dynamic flow networks represented
by temporal directed weighted graphs and (iii) simulation of generic regulation models, policies
and mechanisms applicable in several domains. SFINA aims at minimizing the fragmentation
and discrepancies between different simulation communities by allowing the interoperability of
SFINA with several other existing domain backends. The coupling of three such backends with
SFINA is illustrated in the domain of Smart Grids and disaster mitigation. It is shown that the
same model of cascading failures in Smart Grids is developed once and evaluated with both
MATPOWER and InterPSS backends without changing a single line of application code. Simi-
larly, application code developed in SFINA is reused for the evaluation of mitigation strategies
in a backend that simulates the flows of a disaster spread. Results provide a proof-of-concept for
the high modularity and reconfigurability of SFINA and puts the foundations of a new generation
of simulation tools that prototype and validate online decentralized regulation in techno-socio-
economic systems.

Keywords: simulation, framework, techno-socio-economic system, flow network, agent,
distributed system, cascading failure, inter-dependent networks

1. Introduction

Simulation has traditionally been one of the cornerstone scientific methods for understand-
ing the various complex technical, social or economic systems. However, the introduction of
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cutting-edge ICT technologies in such systems, i.e. Internet of Things, Big Data and others, has
brought fundamental changes in their design and real-time operation with disruptive implica-
tions for the current simulation approaches. On the one hand, techno-socio-economic systems
are nowadays highly inter-connected, inter-dependent and distributed [1, 2]. For example, hu-
man mobility influences traffic systems, traffic systems rely on communication networks that
also support the operations of Smart Grids, which at the end energize all other aforementioned
systems. A data-driven multi-disciplinary approach is required to understand these interactions
and inter-dependencies. On the other hand, the regulation of such complex inter-connected sys-
tems evolves to online, automated and decentralized control systems running intelligent soft-
ware mechanisms. Existing simulation tools cannot anymore imitate the real-world operations
of techno-socio-economic systems as these are nowadays of a total different nature. Alterna-
tive distributed simulation tools, of a fundamentally different design approach, are required by
researchers, engineers, policy-makers and operators to build and run decentralized regulation
mechanisms for inter-dependent techno-socio-economic systems.

This paper introduces such an alternative distributed simulation tool: SFINA, the Simulation
Framework for Intelligent Network Adaptations1. SFINA aims at bridging the gap of the highly
fragmented work on simulation between different scientific disciplines. This is achieved by split-
ting the simulation complexity in three levels that form the conceptual layers of SFINA. The
first layer integrates domain knowledge and dynamics from various domains. Existing simula-
tion tools can interoperate with SFINA. The second layer provides a modeling abstraction using
domain-independent flow networks represented by temporal directed weighted graphs. Such
graphs are temporal as they change the structure or the weights of the nodes/links over time.
The third layer supports the prototyping and evaluation of regulation models, policies and mech-
anisms over the underlying flow networks. Therefore models can be implemented once and
validated across multiple applications domains.

Moreover, this paper illustrates the framework realization with two application scenarios that
provides a proof-of-concept for the modularity, reconfigurability and scalability of SFINA com-
pared to related work. The application scenarios concern the modeling of cascading failures in
Smart Grids and the mitigation of disaster spreads.

Cascading failures are complex phenomena to understand and challenging to prevent or tol-
erate. They have traditionally been a source of societal costs, disorder and chaos. Online reg-
ulation of techo-socio-economic systems results in new threats of reliability and system robust-
ness [1, 3, 4]. This paper shows that the same model of cascading failures can be simulated using
the power flow analysis from two different domain backends. Simulation performance varies
and results about the impact of cascading failures are not always in symphony confirming the
requirement for a multi-perspective modular simulation.

The interplay of structural and functional dynamics of disasters spread, e.g. diseases, financial
crises, earthquakes, and other, have gained significant attention by several research communi-
ties [5]. Mitigation strategies are usually designed with a specific disaster spread model in mind
and for this reason, implemented strategies are usually integrated to the simulated spread models.
In contrast, the framework realization of SFINA interoperates with a disaster spread model as a
backend and two mitigation strategies are implemented as SFINA applications so that they can be
reused for the simulation of other spread models. Moreover, other implemented framework func-
tionality can be seamlessly reused in the simulation process such as test scenarios, visualization
capability and flow measurements.

1Available at https://github.com/SFINA (Last accessed: December 2016).
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The contributions of this paper are summarized as follows: (i) A release to a broad spectrum
of scientific communities of an open-source software framework implemented for multi-domain
simulation of techno-socio-economic networked systems accompanied with several utilities, an
extensive tutorial2 and application examples. (ii) The applicability of flow networks as an ab-
straction methodology in multi-domain simulation. (iii) The interoperation of existing simula-
tion backends with SFINA, without changing a single code line within a SFINA application even
when backends are written in different programming languages. (iv) Two framework realiza-
tions and their evaluation using real-world and synthetic data. They are used to study cascading
failures in power networks and mitigation of disasters spread.

This paper is organized as follows: Section 2 provides an overview of the SFINA framework.
Section 3 illustrates the architecture of SFINA in detail. Section 4 introduces a realization of
SFINA with two application scenarios: cascading failures in Smart Grids and disaster spread in
flow networks. Section 5 compares SFINA with related work. Finally, Section 6 concludes this
paper and outlines future work.

2. Overview

There is often a significant fragmentation in the data formats, models and tools used by aca-
demic and industrial communities when studying and optimizing techno-socio-economic sys-
tems such as transportation systems, financial markets or infrastructural networks, i.e. power,
gas and water networks. This means that several communities use or develop their own data
formats, models and tools that do not allow a more universal evaluation and comparison of mod-
els and mechanisms. This phenomenon results in discrepancies of findings or very customized
solutions with limited applicability.

Motivated by this limiting status-quo, this paper introduces SFINA, the Simulation Framework
for Intelligent Network Adaptations. SFINA represents complex techno-socio-economic systems
as temporal flow networks modeled by dynamic directed weighted graphs. In contrast to static
undirected and unweighted graphs that only show a snapshot of interactions, a temporal flow
network encompasses both structural and functional aspects of most techno-socio-economic sys-
tems. For example, the interconnected infrastructural physical assets and their interactions are
modeled by the directed graph. The resources exchanged in a network can be modeled by the
weights of the graphs. Any change in the assets of the resources can be modeled by a temporal
instance of the graph. The core operation of SFINA is the flow analysis that computes the flow
in a network given its physical characteristics in an application domain. The grant objective of
SFINA is to provide development toolkits to build and evaluate generic and modular flow regu-
lation mechanisms applicable in different flow analysis models and, even application domains.

SFINA is outlined in three layers: (i) Domain knowledge and dynamics concern real-world
data and physical laws that govern techno-socio-economics systems. (ii) Flow networks are an
abstraction of domain knowledge and dynamics. (iii) Regulation models, policies and mecha-
nisms are generic and reusable implementations by the users of the SFINA software.

The interaction of the three layers model a feedback loop: the bottom layer provides infor-
mation about the flow distribution in a network given domain knowledge and dynamics, for
instance, power flow distribution according to the Kirchhoff’s law. The middle layer provides
to the top one structural and flow information of the network that is application-independent.

2Available at: https://github.com/SFINA/Manual (last accessed: November 2016)
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Domain	Knowledge	&	Dynamics	
Real-world	data,	physical	laws,	etc.	

Flow	networks	
Temporal	directed	weighted	graphs	

Regula>on	Models,	Policies	&	Mechanisms	
Flow	op>miza>on,	network	repairability,	coordina>on	mechanisms,	etc.		

Figure 1: The three main layers of the SFINA framework.

Therefore, the top layer can compute and apply to the middle layer generic network adaptations
to the topology or flow that improve performance, for instance, disconnect a node to decrease the
overall flow in the network. The middle layer interacts again with the bottom one to compute the
application-specific new state of the flow distribution after the applied network adaptations.

The three layers of SFINA enable an integrated analysis and prototyping of techno-socio-
economic systems with two novel capabilities:

1. Support of flow analysis and regulatory models for systems of the same domain.
2. Support of flow analysis and regulatory models for systems of several independent or inter-

dependent domains.

These capabilities result in the following advantage: An implemented flow regulation model
can be evaluated with different interoperable tools of the same domain but also among different
domains. For example a flow regulation mechanism for mitigating cascading failures can be
evaluated with multiple interoperable tools of a certain domain, e.g. power networks. One
tool may support the power flow analysis and another tool the transient stability (Capability 1).
Moreover, the same flow regulation mechanism can be evaluated in another domain as well, e.g.
gas and water networks (Capability 2).

SFINA is by design a decentralized multi-agent system and it is an open-source3 implemen-
tation in Java. A SFINA user writes once an application and evaluates it by interoperating with
different tools of the same or different application domain without changing a single line of code
in its application.

3. The SFINA Architecture

The three layers of the SFINA framework in Figure 1 are realized with the architecture of
Figure 2. SFINA consists of 7 components: (i) the Protopeer toolkit, (ii) the file system, (iii) the

3Available at https://github.com/SFINA/SFINA. A tutorial for developers and users is available at https:
//github.com/SFINA/Manual (last accessed: December 2016).
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flow analyzer, (iv) the backend agent, (v) the flow network, (vi) the simulation agent and (vii) the
applications.

Protopeer is a distributed prototyping toolkit that provides networking, scheduling, logging
and deployment services to the overall SFINA framework. The file system loads all required
information for the simulation. Input data can be reloaded during simulation and output data
are written to files during simulation for further post analysis. The flow analyzer computes the
distribution of the flow in the network according to the selected domain backend. The backend
agent is responsible for the power flow analysis given the structural and functional dynamics
of a flow network. The flow network contains and manages information about the nodes, the
links and their topology. The simulation agent orchestrates all other components by scheduling
operations and executing simulation events. Finally, applications expand the functionality of the
simulation agent and implement policies, models and mechanisms for the flow regulation.

…	

Domain	
Backends	

File	System	

…	

Domain	
Backends	

…	

Domain	
Backends	
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Nodes	&	
Links	

Temporal	
Adjustments	

System-wide	
SeNngs	

Flow	Network	
Management,	measurements	&	visualizaGon	

Simula'on	Agent	

Applica'ons	

																																				 	 	Flow	Analyzer	…	 …	 …	…	

Flow	 Flow	 Flow	 Topology	 Events	 Parameters	

Protopeer	
Distributed		networking,	scheduling,	logging	&	deployment	services		

Backend	Agent	

Figure 2: An outline of the SFINA framework.

The execution of a simulation consists of the following run time periods: (i) system, (ii) boot-
strapping, (iii) simulation, (iv) step and (v) iteration. Figure 3 outlines the time management of
the SFINA framework.

The system run time is the total execution period of the SFINA simulation software. It is mea-
sured with a Protopeer clock in simulation or live deployment mode. System run time consists
of the bootstrapping run time and simulation run time. During bootstrapping, the simulation
is initialized by loading the required input information for the simulation. The duration of the
bootstrapping period is chosen by the user. Simulation run time is equal to the system run time
minus the bootstrapping run time. It consists of discrete simulation steps of equal length during
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Figure 3: Time management in SFINA

which measurements are logged, events are executed and flow analysis is performed. The main
operations of applications are also executed in each of the simulations steps. Finally, each sim-
ulation step optionally defines a number of iterations that model sequences of evolving events.
For example, Section 4 shows that the failure of a power line in a power network may result
in a cascading failure during which several other lines consecutively fail. The evolution of a
cascading failure can be modeled and studied with the iterations of SFINA.

An event in SFINA is the adjustment of flow, topology or system parameters during simulation
run time. An event can be static or dynamic. Static events are encoded offline and manually by
the user. They are loaded in the simulation by the file system. Dynamic events are created in an
automated fashion during simulation by the application logic.

A SFINA application can run single-threaded or multi-threaded in a single machine. It can
also run in a cluster or even be deployed in a real-world operational system such as Planet-
lab4 or a cloud computing infrastructure [6]. Protopeer supports these deployments options [7].
Distributed simulation scenarios may include computationally intensive simulations, modeling
of inter-dependent flow networks or even multi-domain simulations. SFINA can also run as a
web service5 so that it can be used in the future within architecture-driven, service-oriented and
workflow-based development environments [8, 9], e.g. BEPEL representation from workflow to
executable.

3.1. The Protopeer toolkit

SFINA is prototyped as a distributed system by design using the interfaces of the Protopeer
library [7]. Figure 4 illustrates an outline of the Protopeer architecture. The simulation and
backend agent extends the functionality of the ‘peerlet component’. Therefore, all SFINA ap-
plications written on top of the core simulation agent have a network API with which they can
exchange messages in real-world networking environments. Moreover, SFINA applications and

4Available at https://www.planet-lab.org (last accessed: December 2016)
5Available at: https://github.com/SFINA/Web-Services (last accessed: December 2016)
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domain backends have access to measurement and logging services that can be used for a post-
analysis of the simulation results. The core simulation agent inherits the scheduling functionality
of Protopeer that reduces low-level programmatic effort required by developers of applications.
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Figure 1: The ProtoPeer architecture. The time API and the networking API consist of only a few basic abstractions

and methods and form the narrow ”waist” of the ProtoPeer’s hourglass architecture. The upper part of the hourglass

are all the components that use the time and networking APIs. The peer provides the runtime context for the

peerlets (§2.6) in which the various parts of the peer’s functionality are encapsulated, e.g. bootstrapping logic, overlay

message routing, event injection (§3.2) or the application-specific logic. The lower part of the hourglass are the

concrete implementations of the abstract time and networking APIs, e.g. message passing over TCP or virtual timers

for scheduling events during simulation. Switching from the simulated system to the actual system is as simple as

switching from one time & networking implementation to another.

tions such as BitTorrent, while the other simpler and faster
models mentioned in the previous paragraph can be used for
delay-bound applications such as DHTs.

2.5 Overlay modeling
Research on peer-to-peer systems has produced many ways

of constructing and maintaining overlays. Most overlays as-
sign identifiers to the peers from some ID space. Each ID
space typically has a distance metric associated with it. For
example, in Chord [23] the ID space is the unit ring (0,1]
and the metric is the distance between the IDs on the ring,
while in Kademlia[18] peers take IDs from the set of 160-bit
integers, the distance is measured as the numerical value of
the bitwise XOR between two IDs. In fact, there exist over-
lays construction protocols for arbitrary identifier spaces and
distance metrics[13]. To support the wide range of overlays,
ProtoPeer defines an abstract PeerIdentifier that is used
throughout the system. The different overlay implementa-
tions override it with concrete implementations of their ID
space and the distance metric.

Most of the peer-to-peer systems define some form of logi-
cal links between peers that together form the overlay topol-
ogy. This concept is so fundamental that it has been added
at the core of ProtoPeer. Each peer has its neighbor set
and exposes it in a uniform way to all applications. Each
neighbor is stored as a pair of the neighbor’s peer ID and
the neighbor’s network address. The neighbor set appears
in many overlay implementations and is sometimes referred
to as the routing table, finger table etc. The neighbor set is
used not only by the overlays but also by the applications
running on top of them such as DHTs, which is another
reason for making access to the peer’s neighbors uniform
throughout the system.

2.6 Peerlets
A peer in the peer-to-peer system typically implements

more than one piece of the message passing functionality.
For example, a peer might need one protocol for contact-
ing the bootstrap server and getting the initial neighbors,
another protocol for maintaining the overlay during churn
and yet another for DHT key replication. In ProtoPeer the
message passing logic and state of each of the protocols is
encapsulated in components called peerlets. Peers are con-
structed by putting several peerlets together. The peerlets
can also be removed or added at runtime.

The peerlets, just as the applets or servlets, have the fa-
miliar init-start-stop lifecycle. The peer provides the execu-
tion context for all of the peerlet instances it contains. The
peerlets can discover one another within that context and
use one another’s functionality. The peerlets have access to
the peer’s network interface through which they send and
receive messages. Peerlets can also arbitrarily modify the
peer’s neighbor set.

The peerlet-based approach has all the advantages of any
other modular design. Firstly, the message passing func-
tionality is conveniently encapsulated in building blocks with
well defined behavior. The blocks can be composed to achieve
the desired peer functionality. Certain functionality can be
easily enabled or disabled depending on the context (e.g. de-
bug mode vs. evaluation mode). Secondly, peerlets can be
reused across applications. Peerlets can export well defined
interfaces e.g. a DHT interface, which can have several im-
plementations that can be easily swapped one for another.
Lastly, peerlets can be unit tested either in isolation or with
other peerlets as mock objects.

2.7 Queuing
Message queues are an essential component of many peer-

to-peer system designs. Queues buffer the messages during
the transient periods when the rate of asynchronously ar-
riving messages at the peer exceeds its capacity to process
them. Very often queues are not explicitly implemented and

Figure 4: An outline of the Protopeer architecture as illustrated in earlier work [7]. SFINA inherits all services and
prototyped functionality of Protopeer and therefore it can be deployed and run as a fully decentralized networked system.

In summary, low level complexity such as scheduling, networking, logging and measurements
is hidden from developers of the SFINA applications that can focus entirely on the development
of flow regulation functionality. Although the current SFINA implementation is supported by
Protopeer library, the design of SFINA does not depend on Protopeer. SFINA interfaces allow
the replacement of Protopeer by another system if this becomes a requirement in the future.

3.2. File system
SFINA relies on a structured file system for (i) a user-friendly dynamic loading of all the

required data and (ii) exporting the simulation output during simulation run time. Four file types
are loaded in system run time with the following information:

1. Flow: It contains domain-dependent information about the physical characteristics of the
network that govern how flow is distributed. For example, for a power system this file may
contain the values of line impedance, node voltages, etc. For traffic systems it may contain
physical characteristics of vehicles, traffic lights or road intersections.

2. Network: It contains domain-independent information about the topology, meaning which
nodes the links connect.

3. Events: It encodes changes of information about a node, link or system parameter at a
certain simulation step. For example the removal of a line at a certain step can be encoded
by a static event.

4. Parameters: It contains global system-wide parameters of the simulation such as which
domain backend is selected for the simulation.
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Flow and network file types can be reloaded and exported at any simulation step, in contrast to
the events and parameters that are loaded only once at the initialization phase. At this develop-
ment stage, the SFINA file format concerns comma-separated text files for easier use and read-
ability of the data used in the simulation. SFINA contains extensible utilities that convert back
and forth other file formats6 to SFINA format so that the user can use state-of-the-art datasets
generated from various domain backends. The data loaders of the file system are modular and
can be extended to parse future data types required in simulations.

The input files can be interactively generated and modified via a GUI7. Instead of generat-
ing the flow network information programmatically, the files can be auto-generated from user-
friendly input given via the SFINA GUI. Figure 5 illustrates how the input files can be auto-
generated from graphical user input.

(a) Interactive topology formation. (b) Insertion of flow information. (c) Insertion of flow values.

Figure 5: Auto-generation of input files based on user-friendly input to a graphical user interface.

3.3. Flow analyzer
Flow analysis is the calculation of the flow in the links and nodes of the flow network given

the physical characteristics of the studied domain and perturbations introduced by the executed
events. A flow analysis highly depends on the domain-specific physical characteristics of the
studied network and the physical laws that govern such a network. Flow analysis is performed at
each simulation step. It can actually be executed several times following the execution of static
or dynamic events. The output of a flow analysis can be used to tailor decision-making and future
regulatory actions on the flow network.

3.4. The backend agent
During bootstrapping, the backend agent loads and parses the flow information from the file

system. It provides, through the simulation agent, a generic interface for flow analysis that is
agnostic of the actual implementation of the adopted domain backend. It is the backend agent
that makes the acquired instantiation of the flow analysis based on the selected domain backend
adopted in the simulation. In this way, the application developer does not need to implement flow
analysis algorithms but can use several existing ones implemented at different domain backends.

6Such formats include the MAT-File and the IEEE Common Data Format.
7Available at: https://github.com/SFINA/GUI (last accessed: December 2016)
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3.5. Flow network
A flow network in SFINA consists of a set of uniquely identified nodes and directed links that

contain the flow information loaded from the input files. A node contains a set of incoming and
outgoing links. Respectively, a link contains a starting node and ending node. A network is
connected if there is a path between any of the nodes, otherwise the network is disconnected to
graph components referred to as islands.

The flow network manages the topology. Nodes and links have two statuses: (i) acti-
vated/deactivated and (ii) connected/disconnected. The former status mandates whether a node
or link is operational during the simulation. Events may determine this status. The latter status
denotes whether a node or link is adjacent to a link or node respectively that actually determines
the topology of the flow network.

Nodes and links have a (i) flow and (ii) capacity. The information type of flow and capacity is
determined by a system parameter and should be information contained in the nodes and links.
The flow type represents a resource distributed in the network and studied in the performed
simulation. The capacity type determines which quantity can make a node or link overloaded that
may result in activation/deactivation and, therefore, connection/disconnection from the topology.

The management of the topology is hidden from applications. This means that a generic inter-
face allows adding/removing nodes and links. The update of the graph occurs in the background
without programmatic effort by developers. A flow network contains general-purpose topolog-
ical and graph spectra metrics such as the node degree, closeness centrality, degree centrality,
degree distribution, clustering coefficient, shortest path and other. Some of this metrics are cal-
culated with the support of the JGrapht library8. Metrics are logged in the background and are
available to the researcher for post analysis. Moreover, the flow network provides the opportunity
of a real-time visualization of the temporal flow network by integrating tools such as Gephi9.

3.6. Simulation agent
The simulation agent orchestrates all other components of SFINA during system run time. It

is responsible for the execution of all scheduled events and the calculation of the network status
that is the topology and the distributed flow. For each measurement type, simulation step, node
and link, registered measurements by the framework or by applications are computed, stored and
logged. At the end of each simulation step, the flow and network information are exported by the
file system in the respective SFINA file format.

The above agent tasks form the active state of the simulation agent and it is executed period-
ically at every simulation step. During bootstrapping, the simulation agent loads the topological
information from the file system and creates the static events. A call for a flow analysis by an ap-
plication is routed to the backend agent for execution. A simulation agent also has a passive state
that listens for external events received during simulation by other agents that may participate in
the simulation.

3.7. Applications
A SFINA application is either a usage scenario of the simulation agent or an extension of the

simulation agent with additional prototyped functionality.
In the first case, minimal or no development effort is required. A SFINA user undertakes the

following actions:

8Available at http://jgrapht.org (last accessed: December 2016)
9Available at http://gephi.github.io (last accessed: December 2016)
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1. Feeding all required input data in the file system as shown in Section 3.2.
2. Running a simulation scenario as instructed by the input data in the file system.

In the second case, development effort is put into extending or overriding the inherited func-
tionality of a simulation agent. This may include one or more of the following actions:

1. Performing, logging and analyzing new measurements.
2. Implementing policies, models and mechanisms for flow regulation.
3. Adjusting or re-implementing existing complex core functionality of the simulation agent.

The design approach and interfaces of SFINA support the first two actions. The possibility of
the third action occurring should be minimized by either adopting more effective software engi-
neering practices at the application-level or updating the core simulation framework of SFINA
to support more complex and tailored functionality.

Upgrading the SFINA framework to support a new domain backend requires the following
actions:

1. Making flow input data available in the SFINA format. This can be done by either using
one of the supporting conversion utilities of SFINA or by building a customized conversion
tool for this purpose.

2. Making available a domain backend library with interfaces for performing flow analysis and
other supported operations.

Moreover, an application logic can be split into multiple communicating agents by using the
generic interfaces and modular approach of SFINA.

4. Framework Realization and Evaluation

This paper provides an empirical proof-of-concept for SFINA by illustrating the framework
realization of the following:

• The interoperation and evaluation of two different backends from the application domain of
Smart Grids (Section 4.1).

• The implementation of a model10 for cascading failures that can run over the two backends
of Smart Grids (Section 4.1).

• The interoperation and evaluation of a backend from the application domain of disaster
spread, e.g. disease spreading (Section 4.2).

• The implementation of two mitigation strategies11 for disaster spread (Section 4.2).

• The implementation of a flow monitor12 for measuring the performance of models running
over all three backends (Section 4.1 and 4.2).

10Available at https://github.com/SFINA/Cascade (last accessed: December 2016)
11Available at https://github.com/SFINA/Disaster-Spread (last accessed: December 2016)
12Available at https://github.com/SFINA/Flow-Monitor (last accessed: December 2016)
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• The visualization13 of flow networks for all three backends (Section 4.1 and 4.2).

• Simulation scenarios for testing and evaluating models running over all three backends (Sec-
tion 4.1 and 4.2).

Figure 6 illustrates the reusability map of the backends and applications illustrated in this
paper. The rest of this section illustrates experimental results for the two application domains.

MATPOWER	 InterPSS	

Simula'on	Scenarios	

Power	System	Backends	 Disaster	Spread	Backend	

DSM	

Cascading	Failure	Model	

Flow	Monitor	

Flow	Network	Visualiza'on	

Mi'ga'on	
Strategy	A	

Mi'ga'on	
Strategy	B	

...	

...	...	

Figure 6: A reusability map of implemented backends and applications built via the SFINA framework.

Note that, the contributions of SFINA in comparison to related work are mainly qualitative.
Therefore, the purpose of this section is to show how the proposed generic and modular frame-
work can be realized in two application scenarios and what opportunities are opened up for
quantitative measurements. Without the use of the SFINA framework, such measurements would
require a significantly higher and more complex programmatic effort.

4.1. Cascading failures in Smart Grids
The interoperation interfaces of SFINA are implemented for two state-of-the-art domain back-

ends: (i) MATPOWER and (ii) InterPSS. MATPOWER14 is an open-source MATLAB simulation
package for power flow and optimal power flow computational problems [10]. It is one of the

13Available at https://github.com/SFINA/GUI (last accessed: December 2016)
14Available at http://www.pserc.cornell.edu//matpower/ (last accessed: December 2016)
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most common tools used in the power domain. MATPOWER simulation code is procedural and
has a scripting-style. In contrast, InterPSS15 is a power system simulation software that follows
the object-oriented and component-based software paradigm [11]. The goal of the interoperation
between SFINA and these backends is to perform DC and AC power flow analysis on which
the model of cascading failures relies on. Results from each backend can be compared without
making two application implementations.

The interoperation of MATPOWER with SFINA is achieved with the support of the Matlab-
control API16. The use of MATPOWER requires the installation of MATLAB. The conversion
utilities of SFINA can convert the MAT-Files of MATPOWER to the SFINA file format. It is
straightforward to interoperate with other MATLAB-based backends in a similar fashion, such
as backends for water and gas networks [12, 13]. The interoperation with InterPSS is straight-
forward as it mainly requires the inclusion of the free Java libraries. However, performing the
desired system calls to the InterPSS library can be complex. Its source code is not open and
knowledge of the implemented algorithms may be required in some cases17. The generic inter-
faces of the backend agent implementing the selected flow analyzer hide this complexity from
the SFINA users and application developers.

The model of cascading failures is implemented once by reusing and extending the function-
ality of the simulation agent. The model captures both DC and AC power flows, it meets the
generation limits and performs load-shedding to match supply and demand. Load-shedding is
repeated 15 times at maximum, after which the system results in a blackout. Most operations
performed are actual calls to the simulation agent. It is only the algorithmic logic that is imple-
mented in the extended agent. In each iteration of the algorithm, power flow analysis is performed
to compute the state of the cascading failure. The model implementation is totally agnostic of
which domain backend, MATPOWER or InterPSS, performs the power flow analysis, in contrast
to related work in which they are usually integrated [3, 14, 15].

Cascading failures are evaluated in five case networks18: (i) case-30, (ii) case-57, (iii) case-
118, (iv) case-2383 and (v) case-2736. Two measurements quantify the impact of the cascading
failure: (i) line losses and (ii) power losses. Line losses are the ratio of lines failed due to
overloading during the cascading failure. Power losses equal one minus the power served after
the cascading failure over the power served before the cascading failure. These measurements
are performed and logged within the developed flow monitor agent that extends the functionality
of the simulation agent. The performed measurements can be reused beyond cascading failure
models. This paper focuses on simulating and quantifying the impact of cascading failures.
Prevention and mitigation strategies, such as flow regulation with smart transformers [16, 17],
are out of the scope of this paper and subject of ongoing work. Experiments are performed on a
MacBookAir v.4.2 with 1.8 GHz CPU, 4 GB RAM and Matlab R2015a installed. A prototype
for live deployments in the Brutus and Euler cluster19 of ETH Zurich is under development as
well.

The integration of Gephi in SFINA is used to visualize the impact of cascading failures. Fig-
ure 7 illustrates two power networks, case-118 and case-2383 before and after a cascading failure.

15Available at http://www.interpss.com (last accessed: December 2016)
16Available at https://code.google.com/p/matlabcontrol/ (last accessed: December 2016)
17These challenges are overcome using the comprehensive tutorials of InterPSS and direct communication with the

InterPSS support team.
18Available at http://www.pserc.cornell.edu/matpower/docs/ref/matpower5.0/menu5.0.html (last ac-

cessed: December 2016)
19Available at http://brutuswiki.ethz.ch/brutus/Brutus_wiki (last accessed: December 2016)
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Several events each removing a power line, trigger the cascading failure. The links colored red
indicate the removed power lines. The size of the nodes and the thickness of the links indicate
the amount of power they serve. The missing links before and after the cascading failure refer to
the power lines trimmed during the cascading failure.

Slack Bus Generator Bus

(a) Case-118, before cascading failure (b) Case-118, after cascading failure

(c) Case-2383, before cascading failure (d) Case-2383, after cascading failure

Figure 7: Gephi visualization of cascading failures. Before the cascading failure, the removed lines are marked as
red. The size of the nodes and the thickness of the lines indicates the amount of power they serve. For better visual
representation, line directions are removed.

Figure 8 illustrates the power losses computed with MATPOWER and InterPSS when a pro-
portion of lines are incrementally removed. Both DC and AC flow analysis is shown for each
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domain backend for case-30. Experiments are repeated 10 times and results are averaged out.
In Figure 8a, the removed lines are random but fixed between the performed experiments, in
contrast to Figure 8b that shows the results for totally random line removals. The results of Fig-
ure 8a show that the power losses under cascading failures are on average 15.09% higher for AC
compared to DC. Both MATPOWER and InterPSS compute power flow distributions with the
same power losses.
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(a) Random removed lines, fixed among experiments.
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(b) Random removed lines among experiments.

Figure 8: Power losses under cascading failures triggerred by line removals in case-30.

Figure 9 complements Figure 8 by showing the power losses when a proportion of the capacity
in the lines is incrementally decreased. In contrast to Figure 9a, Figure 9b restores the trimmed
lines at every capacity reduction. Results show the same phase transition in both cases. Both
MATPOWER and InterPSS compute power flow distributions with the same power losses.

In large-scale networks, the two domain backends result in different outcomes. Figure 10a
shows that for DC in case-118, MATPOWER results in 1.29% higher power losses than In-
terPSS. Under AC power flow, InterPSS does not converge and results in a blackout, in contrast
to MATPOWER that computes average power losses of 19.5%. Case-2736 in Figure 10b cannot
converge for both MATPOWER and InterPSS in AC power flow due to the violation of the gen-
erator limits. For a DC power flow analysis, both MATPOWER and InterPSS result in 46.61%
of average power losses.

Figure 11 illustrates the simulation speed of SFINA with each domain backend. Overall,
InterPSS is 93.71% and 88.63% faster than MATPOWER in flow analysis for case-30 and case-
57. This is because of the external calls to MATLAB by the JVM. However, InterPSS has a high
initialization overhead in the total run time that is especially observable in low total run times
such as the one of case-30. Simulation in case-30 is on average 89.13% and 72.7% faster than
case-57 for MATPOWER and InterPSS respectively.

Figure 12 shows in more detail the processing overhead of SFINA under cascading failures in
case-30, triggered by line removals and capacity reduction. Experiments are repeated 10 times
and with random removed lines but fixed among experiments. Figure 12a shows an overhead with
several fluctuation but without highly distinguished changes as the number of removed lines in-
creases. The average number of iterations is 1.05. The average simulation time is 359.47, 542.89,
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(a) Without line restoration.
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(b) With line restoration

Figure 9: Power losses under cascading failures triggerred by capacity reduction in case-30.
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(a) Case-118
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(b) Case-2736

Figure 10: Power and line losses under cascading failures triggerred by line removals in larger-scale networks.

287.97 and 207.41 ms for MATPOWER AC, MATPOWER DC, InterPSS AC and InterPSS DC.
These results are expected given the nearly linear increase of power losses observed in Figure 8.
In contrast, Figure 12b is in line with the phase transitions observed in Figure 9. When capacity
reduction overpasses 19.0%, the average number of iterations increase from 1 to 4.53, resulting
in an overall increase of the simulation time for both domain backends and DC/AC power flow
models. The average simulation time is 542.91, 548.17, 582.97 and 320.35 ms for MATPOWER
AC, MATPOWER DC, InterPSS AC and InterPSS DC. The respective numbers before and after
phase transition are 150.56, 164.28, 225.72, 84.66 and 773.63, 751.10, 799.16, 455.41.
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Figure 11: Simulation speed of MATPOWER and InterPSS under cascading failures with DC and AC power flows.
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(a) Cascading failure via line removals.
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(b) Cascading failure via capacity reduction.

Figure 12: Simulation speed and number of iteration under cascading failures in case-30.

These measurements show that both MATPOWER and InterPSS communities can use their
software within SFINA to study the same model of cascading failures. The model itself can
be validated in more depth by inter-changing backends as illustrated in this section. Therefore,
results can be easier accessible and reproducible between different communities. The cascading
failure model does not always converge for both domain backends. This is subject of discussion
and further explanations in regards to the implemented flow analysis models in the two domain
backends and the model of cascading failures.
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4.2. Disaster spread in flow networks

Beyond Smart Grids, there is a plethora of networks in real-world that may suffer from the
catastrophic effects of cascading failures. For example, epidemic spreading of diseases [18],
failure of financial markets [14], traffic congestion [19] are all examples in which the interplay
and inter-dependencies between structural and functional dynamics may result in cascades of
individual damages throughout the network with catastrophic effects. There are several scientific
communities that study general spreading models, protection strategies, emergency response and
recovery mechanisms, or even efficient distribution of resources to fight disasters, e.g. immu-
nization, airline traveling policies or redistribution of medical personnel to mitigate a pandemic,
recovering from floods or fighting forest fires. Given the broad coverage, generality and signif-
icance of the topic, a general state-of-the-art model [20] for disaster spread is implemented in
SFINA as a backend. This model is referred to as DSM, the Disaster Spread Model. The backend
is implemented in Java.

The DSM model defines a flow network of nodes and bidirectional links that calculate a set
of coupled differential equations. Each equation governs the change of ‘damage’ in a node over
time. Each node is characterized by a damage level and a tolerance threshold θ with an α gain
parameter over which the node is fully damaged. Moreover, each node has a recovery rate τstart

and the spread of the damage in interconnected nodes is a function of the node degree. Each link
is characterized by the connection strength, a time delay ti j and the β parameter that models the
physical characteristics of the surrounding. The a and b fit parameters weight the influence of
node degree on the disaster spread process. More information about the mathematical model and
its parameters is out of the scope of this paper. They are defined in detail in Equation (2) of the
earlier work [20].

The goal of the experimental evaluation is to evaluate damage mitigation strategies in DSM
under the N-1 attack model. This model is broadly used to quantify the robustness of power
systems, data centers, aerospace and automobiles applications. It defines the process of damaging
one link/node, checking system reliability, recovering the network to its initial state and repeating
the process for all links/nodes in the network. In contrast, the evaluation process in the earlier
work is limited to the damage of a single random node. Each node damaging is implemented
as an experiment and the damage level of the selected node is set to 4.0. Each experiments runs
for 100 simulation steps. The attack model and mitigation strategies are implemented as SFINA
applications and can be reused in different simulations and backends.

Two types of network topologies with 500 nodes are generated using the networkx package
of Python: (i) grid network, with 20 rows and 25 columns and (ii) Erdős-Rényi random graph
with 0.02 probability. The parameters of the model are illustrated here for the repeatability of
results. Node parameters are chosen as α = 5, β = 0.025, θ = 0.5 and τstart = 4. Link parameters
are chosen as connection strength of 0.5, ti j from a χ2 distribution with µ = 4, scaling factor
of 0.05 and translation factor of 1.2. Moreover, it is set a = 4 and b = 3. Two mitigation
strategies20 are employed from the earlier published work: (i) strategy A and (ii) strategy B.
The strategies are implemented as SFINA applications by extending the simulation agent so that
they can be reused by other disaster spread models in the future. This flexibility is the result of
the generic and modular design of SFINA. The strategies define resources for recovery from a
resource distribution function r(t) = a1tb1 e−c1t, with a1 = 25, b1 = 1.1 and c1 = 0.03. These
equation and parameters model an initial exponential increase and a gradual decay of resources

20These strategies correspond to the strategy 3 and 4 in the earlier work [20]
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over time. Resources are supplied after 10th simulation step. Finally, the recovery rate of a node
at a specified time is given by 1/τi(t) = 1/(τstart − β2)e−α2Ri(t) + β2 with α2 = 0.58 and β2 = 0.2.
These parameters are evaluated earlier to give an efficient response to disaster spread.

Figure 13 visualizes the disaster spread and the effect of mitigation strategy A for the grid
network. It is evident that both the extent and speed of the disaster are lower for strategy A. The
visualization is in line with the average node damage quantified in Figure 14a. The average node
damage for strategy A and B is 37.65% and 58.15% lower than the case in which no mitigation
strategy is employed. Strategy A has 35.25% lower average damage than strategy B. Based on
this, the probability of increasing the average node damage from a simulation step to the next
one is quantified in Figure 13b. During the outbreak and before resources are supplied, the two
strategies do not prevent the spread. After the utilization of the resources, the spread decreases
for a few steps as nodes recover, however, it is already too late as a few more damaged nodes
result in the disaster spread overpassing the recovery process. Given the lower level of damage
per node, the two strategies cause an overall lower spread of the disaster, as shown in the color
of the nodes.
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Figure 13: Gephi visualization of disaster spread for the grid network. The red color indicates the damaged nodes during
the spreading process. (a)-(d) No strategy. (e)-(h) Strategy A.

Figure 15 visualizes the disaster spread and the effect of mitigation strategy A for the Erdős-
Rényi random graph. Similarly to the grid network, the spread of the disaster is evidently lower
in the case that strategy A is employed. Figure 16a illustrates the average node damage, in
which strategy A and B show 29.28% lower value than the case of no use of mitigation strategy.
Figure 16b illustrates the probability of increasing the average node damage from a simulation
step to the next one. The increase of the damage spread is much more dramatic here than in the
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Figure 14: Disaster spread for the grid network.

grid network. This is because the damage has many more ways to spread in a random network
compared to a well-structured grid topology.
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Figure 15: Gephi visualization of disaster spread for the Erdős-Rényi random graph. The red color indicates the damaged
nodes during the spreading process. Nodes with larger size have higher node degree than nodes with smaller size.
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The measurements of the Figure 14 and 16 are performed by the flow monitor as in Section 4.1.
It is implemented as a SFINA application that can be reused for flow network measurements in
different backends.
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Figure 16: Disaster spread for the Erdős-Rényi random graph.

The average simulation time of the flow analysis and the total run time is evaluated in Fig-
ure 17. Flow analysis causes most of the processing overhead, 98.33% of the total run time on
average, therefore, the SFINA framework by itself introduces a minimal overhead in the simu-
lations. The simulation with the Erdős-Rényi random graphs are 64.52% slower than the one
of the grid network due to the higher number of links and the overall higher complexity of the
interactions modeled in the differential equations.
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Figure 17: Simulation speed of disaster spread in the grid network and the Erdős-Rényi random graph. The flow analysis
time and total run time are measured. Simulation time is averaged across each node damage in the N-1 model. The errors
in the bars indicate the variation in 10 simulation repetitions.

20



5. Comparison with Related Work

Two mainstream approaches for modeling and simulation of complex processes are Petri nets
and Pi-calculus. Petri nets focus on the state representation of processes and they are known
for their formal semantics, state-based modeling and abundance of analysis techniques [21].
However, their interpretation and modeling can be challenging and complex [22, 23, 21]. More-
over, it is earlier documented that state-based representation of workflows and processes have
come to their limitation as techno-socio-economic systems have complex inter-domain and inter-
organzitional workflows, for instance, the service-oriented computing (SOC) with the concepts
of orchestration and choreography [24]. The linear language expressions of Pi-calculus can also
be highly complex and require advanced language expertise to adhere to the language and model
formalism, even for simple models as illustrated in earlier challenges [21]. SFINA simplifies the
process design by adopting event-based flow networks for system modeling without prohibiting
the aforementioned and other workflow models. Each node in the network can run a Petri net or
Pi-calculus mode for the regulation of the flow in a certain domain. Moreover, the flow network
can support above a certain Petri net or Pi-calculus model that manages a process such as the
restoration of a power system after a blackout. These mixed modeling approaches are observed
in earlier work and are usually domain-dependent [25], designed to capture as much details as
possible to accurately mimic phsyical systems. In contrast, the core simulation engine of SFINA
is designed to support several multi-domain processes.

Some earlier work [26, 27, 28, 29] stretches the role of software technologies and standards to
make simulation tools more generic and applicable in different applications. Although this paper
supports this claim, technology by itself cannot tackle real-world challenges. The architecture
and components of SFINA discussed in this paper are, to a high extent, technology-independent.
It is the actual concepts, system design and component synergies that structure the proposed
framework for the simulation of self-regulating techno-socio-economic systems.

Most simulation frameworks focus on a single domain. For example, in power systems and be-
yond MATPOWER or InterPSS, GridSpice [30] is an open source cloud-based simulation pack-
age for the smart grid. It incorporates code from MATPOWER and GridLAB-D21. Its simulator
wrappers allow users to plug in new tools to run separate distribution and transmission system
simulations. This capability shares similarities with the support of multiple backends by SFINA,
however, GridSpice focuses entirely on power systems and does not have generic semantics for
flow networks. Moreover, GridSpice relies on Amazon Web Services, for a cluster deployment,
in contrast to SFINA that can be deployed to any networked infrastructure. Other simulation tools
for power systems include the PowerSystems22 of Modelica. Co-simulation approaches move a
step further by modeling both power and communication networks [31, 32, 33, 34]. Simulation
systems in other application domains include network epidemiology [35, 36, 37], knowledge
flows [38], evacuation systems [39] or traffic systems [40].

There is also a plethora of simulation tools that perform simulation of computer networks,
physical or overlay networks [41, 42, 43, 44, 45]. Such tools are reviewed extensively in earlier
work [46]. Only a few of these tools model networks as temporal directed weighted graphs.
Simpler representation of static networks are usually employed. Other generic simulation tools
include agent-based ones [47, 48], social simulators [49, 50], and simulators of social networks
such as Hashkat23. These tools focus on understanding system complexity, in contrast to SFINA

21Available at http://www.gridlabd.org (last accessed: December 2016)
22Available at https://github.com/modelica/PowerSystems (last accessed: December 2016)
23Available at http://hashkat.org (last accessed: December 2016)
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that goes a step further to simulate mechanisms for the self-regulation of several techno-socio-
economic systems.

Related work on cascading failures in power grids and beyond is limited to modeling instead of
the modular and reconfigurable simulation of these complex phenomena [3, 14]. MATCASC [15]
is a MATLAB-based tool that simulates cascading line outages in power grids. Authors focus on
the simulation of cascading failures and not on their control or mitigation. They provide valuable
metrics for quantifying the system robustness under cascading failures. However, MATCASC
does not integrate AC power flow analysis and linearizes active power flow equations with sev-
eral assumptions that may not always hold as shown in Section 4. It exclusively uses the tolerance
parameter for estimating the line capacities. In contrast, SFINA does not rely on a commercial
tool but instead interoperates with domain backends such as MATPOWER and InterPSS to pro-
vide state-of-the-art DC and AC power flow analyses with further options for solving optimal
power flow problems. SFINA also simulates line capacities with both tolerance parameter and
line ratings. Events can easily encode any static and dynamic line removal scenarios.

In conclusion, related work on the simulation of techno-socio-economic systems lies on the
spectrum between highly flexible and generic simulation frameworks to highly customized soft-
ware tools tailored to simulate system scenarios within a specific domain. The former may
result in complex unintuitive framework realizations. The latter has limited practical use and
applicability, especially when the nowadays techno-socio-economic systems become more inter-
connected, inter-dependent and multi-perspective. SFINA bridges this gap by allowing the in-
teroperation with multiple domain backends, whose domain knowledge and dynamics are ab-
stracted by dynamic flow networks represented as temporal directed weighted graphs. This net-
work abstraction brings solid theoretical fundamental knowledge on complex networks into a
highly empirical and experimental context. The applicability of regulation models, policies and
mechanisms, such as preventing or mitigating cascading failures and disaster spreads, can be
simulated and evaluated within the proposed framework. SFINA does not aim to replace exist-
ing simulation tools, rather to form a unifying umbrella over a significant but highly fragmented
work on the simulation of techno-socio-economic systems.

6. Conclusion and Future Work

This paper concludes that SFINA is a modular, reconfigurable and scalable simulation frame-
work capable of prototyping online decentralized regulation for techno-socio-economic systems.
This is shown by interoperating and experimentally evaluating several backends for flow anal-
ysis and reusable applications that measure, mitigate, and visualize complex phenomena such
as cascading failures and disaster spread. Rather than coming to replace existing simulation
tools, SFINA aims at minimizing the fragmentation and discrepancies between simulation com-
munities. Its ultimate objective is to respond to nowadays challenges on how to regulate highly
inter-connected and inter-dependent techno-socio-economic systems as a result of the pervasive
ICT technologies in several societal sectors.

The further support of other domain backends, the simulation of models on inter-dependent
networks, the showcase of other application scenarios and the execution of SFINA in real-world
distributed networks are part of future work. Moreover, compliance to interoperability stan-
dards [27], open data formats and code auto-generation for translating high to low level models
are subject of ongoing work. Synergies with several simulation communities are a priority for
the wide adoption of SFINA.
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